Fundamentals of Analyzing Biomedical Signals

Linear Methods

Linear Methods

for

Time-Series Analysis

Motivation

- linear methods
 - can yield complementary, useful information
 - may decide about prerequisites for non-linear methods
 - some are basic ingredients of non-linear methods

- non-linear methods may be overkill
- get acquainted with the pitfalls of data analysis

Statistical Data Analysis

model-independent model-dependent moments of distributions model fitting • (in-)equality of distributions parameter estimation correlation robust estimation descriptive statistics

Distribution of Values

Given: time series *v*: v_1 , v_2 , ..., v_N of some system observable **x**

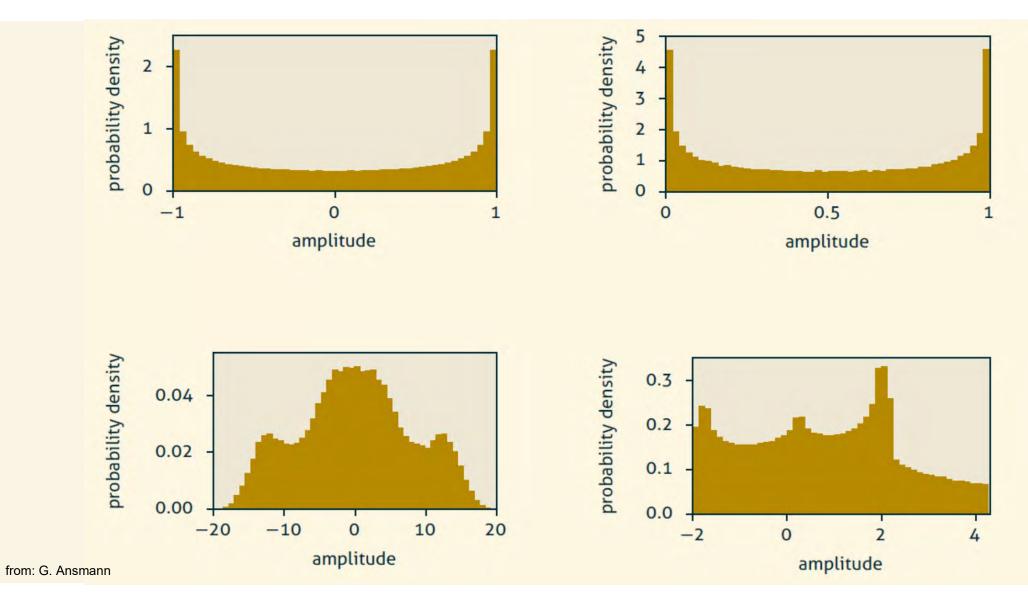
Assumption: each value of the time series is independently sampled from some distribution

Assumption implies:

- no memory
- no dynamics
- time is not important
- stationarity (definition: later)

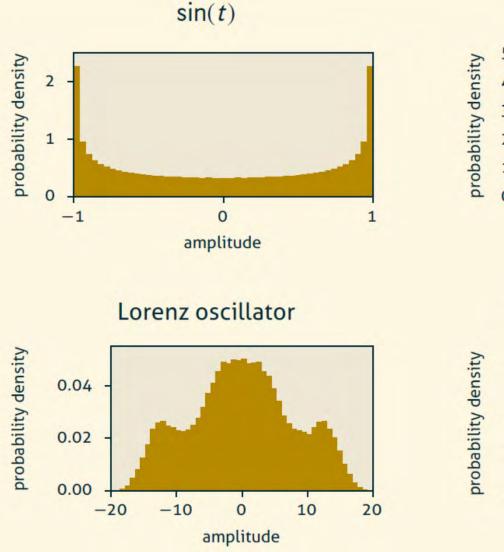
Distribution of Values

Examples

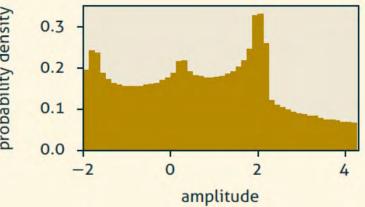


Distribution of Values

Examples



$$2\sin(t) + (\sin(\sqrt{3}t) + \frac{1}{2})^2$$



first moment: *mean*

$$\bar{v} := \frac{1}{N} \sum_{i=1}^{N} v_i$$

mean vs. expected value:

- mean \overline{v} is a property of a dataset
- expected value $\langle v \rangle$ is a property of a population
- if a dataset is sampled from some population, \overline{v} is the best estimator for $\langle v \rangle$ (of that population)

(law of large numbers)

second moment: *variance*

$$\sigma_v^2 := \frac{1}{N-1} \sum_{i=1}^N (v_i - \bar{v})^2$$

width of the distribution, variability of the time series

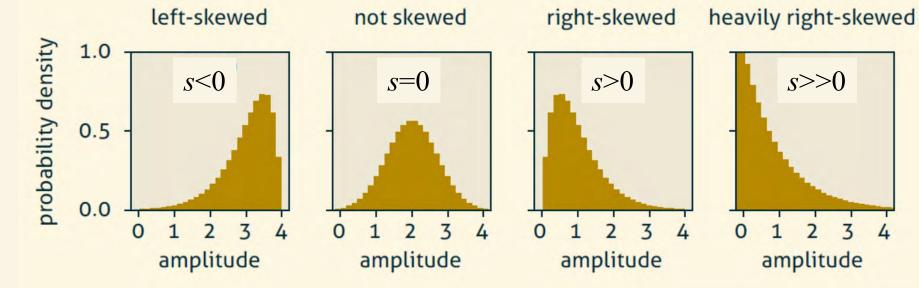
σ: standard deviationnormalization factor:

N-1: estimating variance from a dataset

N: variance of a population

third moment: *skewness*

$$s_v := \frac{1}{N} \sum_{i=1}^{N} \left(\frac{v_i - \bar{v}}{\sigma_v} \right)^3$$

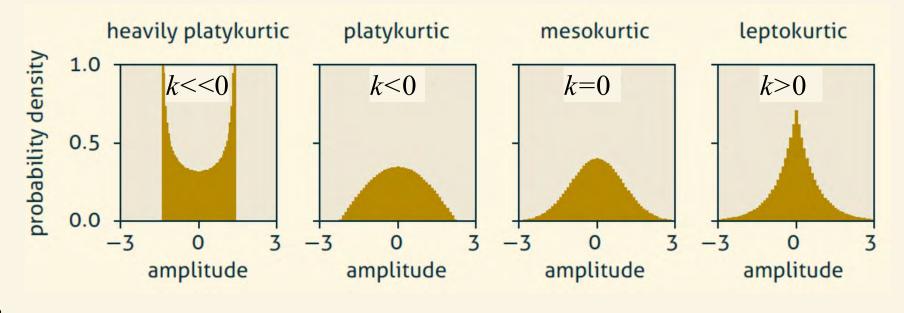


from: G. Ansmann

s = 0 for any symmetric distribution

fourth moment: *kurtosis*

$$k_v := \frac{1}{N} \sum_{i=1}^{N} \left(\frac{v_i - \bar{v}}{\sigma_v} \right)^4 - 3$$



from: G. Ansmann

the normal distribution has k=0

interpreting skewness and kurtosis

- typical noise is a superposition of many small effects
 - → typical noise is approximately normally distributed (central limit theorem)
- normal distribution is symmetric and mesokurtic
- significantly non-zero skewness and kurtosis hint at
 - non-linearity of measurement
 - dynamics
 - non-linear dynamics
 - extremes

Example: skewness

- assumption / prerequisite: data independently sampled from some population
- *null hypothesis:* population not skewed
- *p-value / error probability / significance:* probability to find observed skewness
 in a population complying with the null hypothesis
 ~ probability that null hypothesis is true

typical procedure:

- 1. choose significance threshold α , e.g., α = 0.05
- 2. if $p < \alpha$, reject null hypothesis, e.g., consider data skewed

Example: skewness

Beware the prerequisites !

significance values are meaningless if assumptions are not fulfilled

results for skewness test for $\{\sin(t) | t \in T\}$

T	p
(0.00, 0.01,, 9.00)	4 · 10 ⁻⁹
$(0.00, 0.01, \dots, 40.00)$	0.02
(0.00, 0.01,, 41.00)	0.002
(0.0, 0.1,, 9.0)	0.05
(0, 1,, 100)	0.95

problem: data not independent !

Comparing Distributions

Comparing means

Student's t-test

Given: time series *v*: v_1 , v_2 , ..., v_{N_v} and *w*: w_1 , w_2 , ..., w_{N_w} and respective means

$$t = \frac{\bar{v} - \bar{w}}{\sigma_{vw}}$$

where

$$\sigma_{vw} = \sqrt{\frac{\sum_{i=1}^{N_v} (v_i - \bar{v})^2 + \sum_{i=1}^{N_w} (w_i - \bar{w})^2}{N_v + N_w + 2}} \left(\frac{1}{N_v} + \frac{1}{N_w}\right)}$$

p-value: tables or incomplete beta-function

Comparing Distributions

Comparing variances

F-test

Given: time series *v*: v_1 , v_2 , ..., v_{N_v} and *w*: w_1 , w_2 , ..., w_{N_w} and respective variances

$$F = \frac{\sigma_v^2}{\sigma_w^2}$$

p-value: tables or incomplete beta-function

Statistical Tests *Kolmogorov-Smirnov (KS) test*

based on cumulative distribution functions:

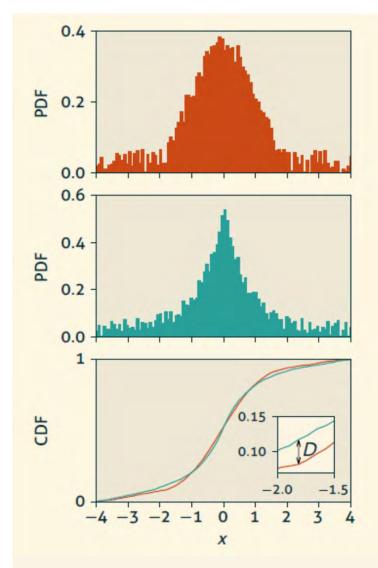
$$\operatorname{CDF}(x) := \int_{-\infty}^{x} \operatorname{PDF}(\tilde{x}) \mathrm{d}\tilde{x}$$

significance obtained from maximal distance between CDFs

$$D := \max_{x} |\mathrm{CDF}_{1}(x) - \mathrm{CDF}_{2}(x)|$$

p-value: tables

Comparing Distributions



from: G. Ansmann

Example: KS-test

Beware the prerequisites (once more) !

significance values are meaningless if assumptions are not fulfilled

results for comparing $\{\sin(t) | t \in T_1\}$ with $\{\sin(t) | t \in T_2\}$

T_1	T_2	p
(0.00, 0.01,, 9.00)	(3.00, 3.01,, 12.00)	6 · 10 ⁻³³
(0.00, 0.01,, 40.00)	(3.00, 3.01,, 43.00)	2 · 10 ⁻⁵
(0.0, 0.1,, 9.0)	(3.0, 3.1,, 12.0)	0.001
(0, 1,, 100)	(3, 4,, 103)	0.99

problem: data not independent !

Comparing Distributions

Pearson's correlation coefficient

Given: time series v: v_1 , v_2 , ..., v_N and w: w_1 , w_2 , ..., w_N

covariance

$$\operatorname{cov}_{vw} := \frac{1}{N-1} \sum_{i=1}^{N} (v_i - \bar{v}) (w_i - \bar{w})$$

Pearson's r

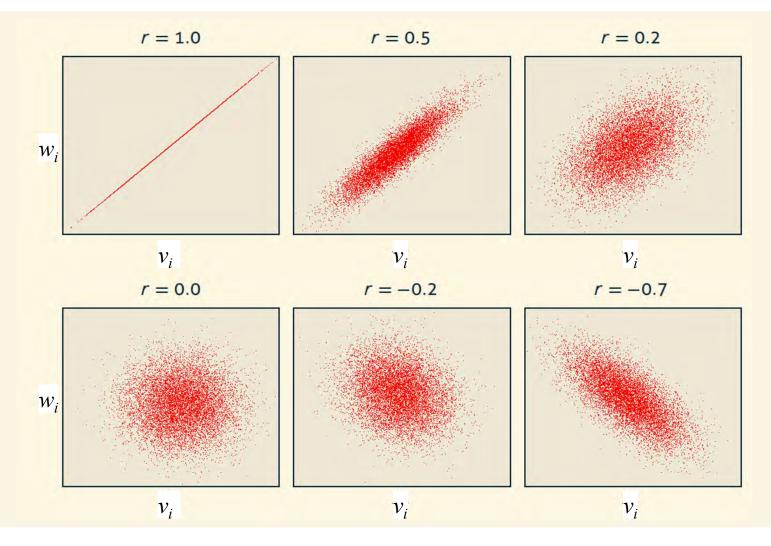
$$r_{vw} := \frac{\operatorname{cov}_{vw}}{\sigma_v \sigma_w}$$

- r = 1: perfect correlation
- r = 0: no correlation
- r = -1: perfect anti-correlation

from: G. Ansmann

Comparing Distributions

Pearson's correlation coefficient



Cross-Correlation

extension of Pearson's correlation coefficient

Motivation:

- possible offset in time-dependent data
- sensors may capture dynamics with delay between them

Given: time series *v*:
$$v_1$$
, v_2 , ..., v_N and
shifted time series w^{τ} : $w_{1+\tau}$, $w_{2+\tau}$, ..., w_N

Cross-correlation (with appropriately truncated time series): $C_{vw^{\tau}} = r_{vw^{\tau}}$

symmetry:
$$C_{vw^{ au}} = C_{wv^{- au}}$$

Cross-Correlation

Intermezzo: application of cross-correlation

task: find delay and synchrony between two time series

1. find delay that maximizes cross-correlation:

 $\hat{\tau} = \operatorname{argmax}_{\tau} C_{vw^{\tau}}$

2. use maximized cross-correlation as measure for synchrony

restrictions:

assumes comparable dynamics assumes "simple" form of synchronization (details later)

Auto-Correlation

Auto-correlation (with appropriately truncated time series):

$$R_{v^{\tau}} := C_{vv^{\tau}} = r_{vv^{\tau}}$$

properties:

$$\begin{aligned} R_{v^{\tau}} &= R_{v^{-\tau}} \\ R_{v^{\tau=0}} &= 1 \end{aligned}$$

positive autocorrelation implies some repeating structure in the data

1

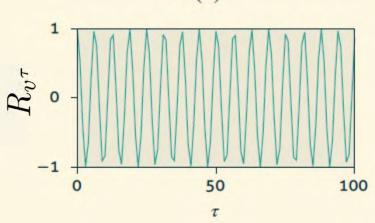
0

-1

0

1

 $R_{v^{\tau}}$



Lorenz oscillator

2

τ

3

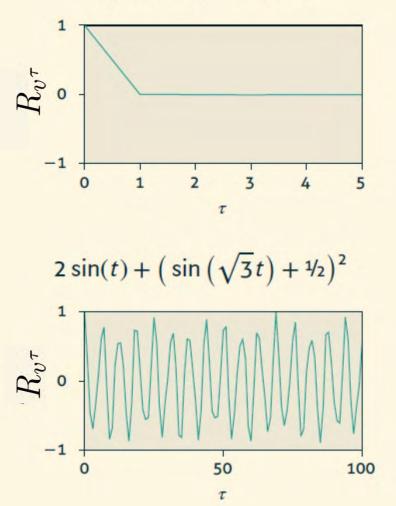
5

4

sin(t)

Auto-Correlation: Examples

logistic map (r = 4.0)



from: G. Ansmann

Rank-based Methods

It is sometimes more appropriate to consider how values rank instead of considering the actual values:

pros: robust against outliers, often fewer constraints on data cons: information is discarded

mean Pearson's *r* Kolmogorov-Smirnov test median Kendall's tau, Spearman's rho Mann-Whitney test

Stationarity

- Stationarity is a system property!
- definition for time series analysis:

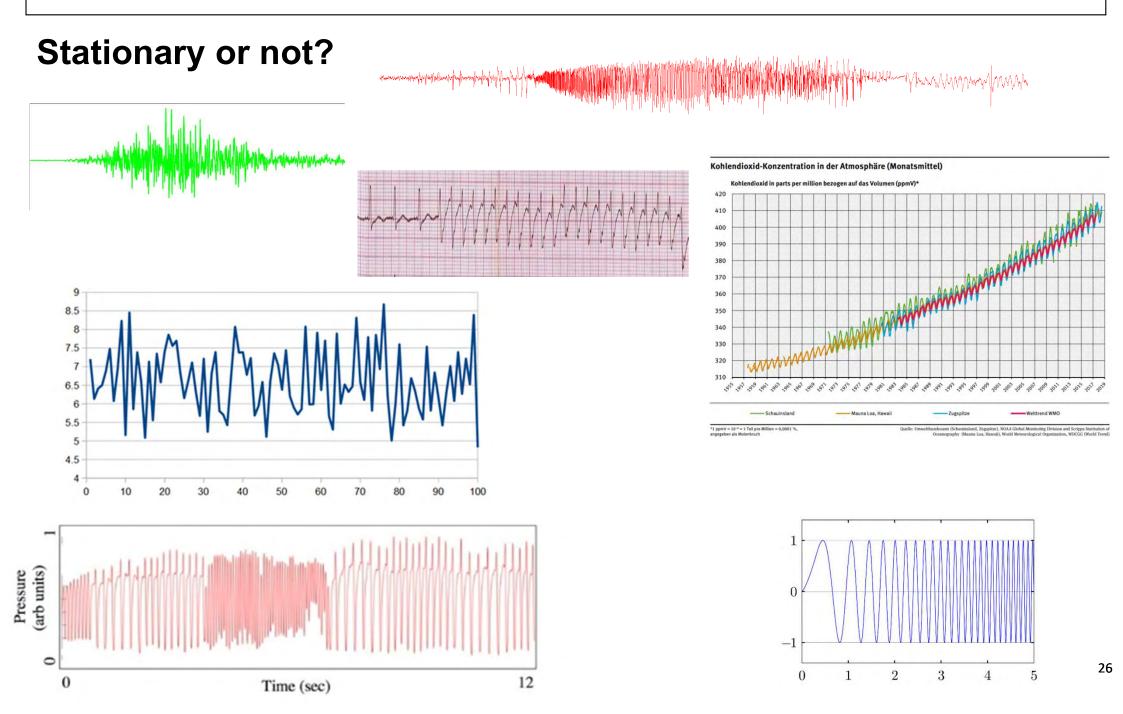
"a (stochastic) process is called stationary if the distribution of its states over an ensemble of realizations of that process does not depend on time"

- this implies:

constancy of all statistical moments (mean, variance, ...) and all joint statistical moments (covariance, ...)

- examples for non-stationary processes:
 - dynamics with changing parameters
 - driven dynamics
 - transient dynamics

Linear Methods



Stationarity prerequisite of most analysis techniques

- ensures reproducibility of experiments
- required for ergodicity (time average ↔ phase space average)
- depends on the time scale:

on short time scales, an non-stationary process can be approximated as stationary

on long time scales, instationarities may be regarded as parts of the dynamics or a driver

Stationarity

strong stationarity

"a (stochastic) process is called strongly stationary <i>if the distribution of its states over an ensemble of realizations of that process does not depend on time"

weak stationarity

"a (stochastic) process is called weakly stationary if its mean, variance, and covariances do not depend on time"

Frequency Spectrum

Identifying hidden periodicities

Assumption:

The time series can be decomposed into periodic components

This implies

- periodicity, quasiperiodicity
- no chaos
- memory

Frequency Spectrum

Fourier transform

Continuous Fourier transform:

$$\hat{v}(\omega) := \int_{-\infty}^{\infty} v(t) \exp(-i\omega t) dt; \ \omega = 2\pi f$$

Discrete Fourier transform:

$$\hat{v}_k := \sum_{t=0}^N v_t \exp\left(\frac{-ikt}{N}\right)$$

Numerical realization:

- Fast Fourier Transform (FFT)
- beware how the output is aligned

Properties of the Fourier transform

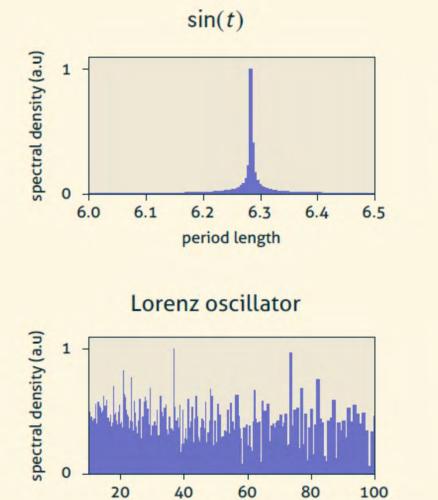
- **Convolution theorem**
- **Correlation theorem**
- Wiener-Khinchin theorem
- **Plancharel theorem**
- Parseval's theorem

 $\widehat{v * w} := \widehat{v} \cdot \widehat{w}$ $C_{vw} := \widehat{v}^* \cdot \widehat{w}$ $\widehat{R_v} = \widehat{C_{vv}} = \widehat{v}^* \cdot \widehat{v} = |v|^2$ $\sum_{t=1}^N v_t^* \cdot w_t \propto \sum_{k=1}^N \widehat{v_k}^* \cdot \widehat{w_k}$ $\sum_{t=1}^N |v_t|^2 \propto \sum_{k=1}^N |\widehat{v_k}|^2$

... and respective analogues for the inverse Fourier transform

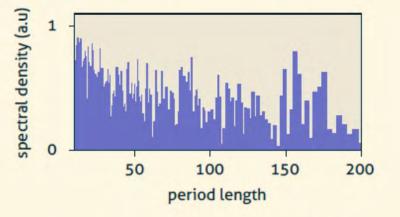
Fourier transform

Examples

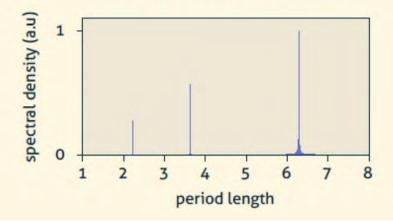


period length

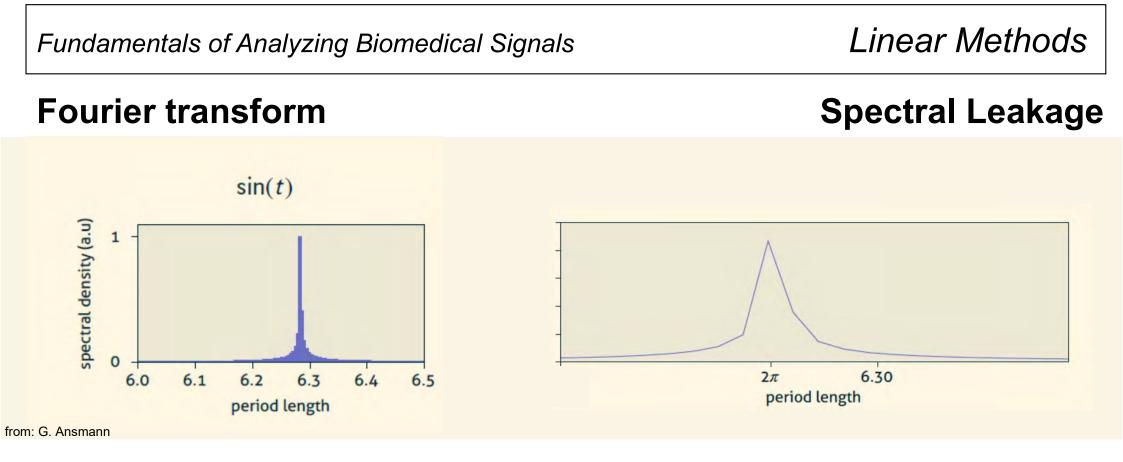
logistic map (r = 4.0)



$$2\sin(t) + (\sin(\sqrt{3}t) + \frac{1}{2})^2$$



from: G. Ansmann



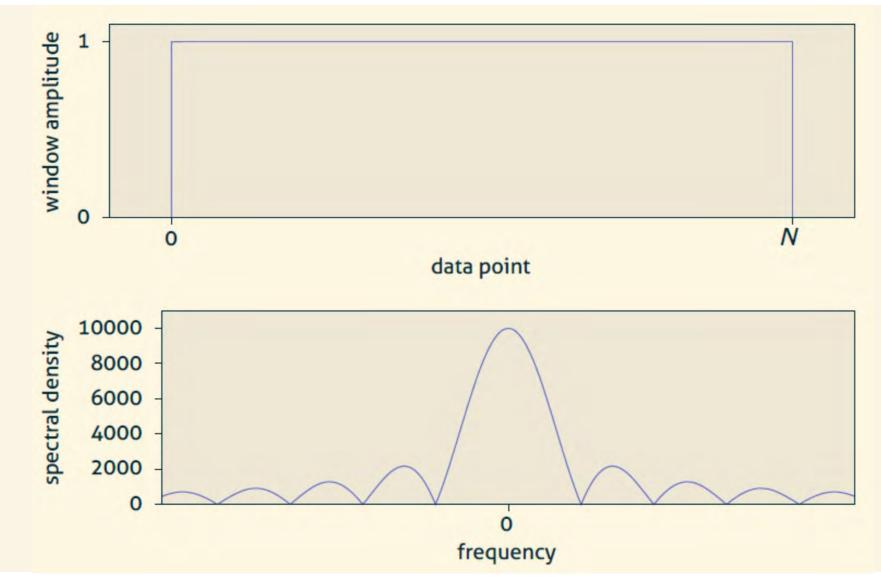
problem:

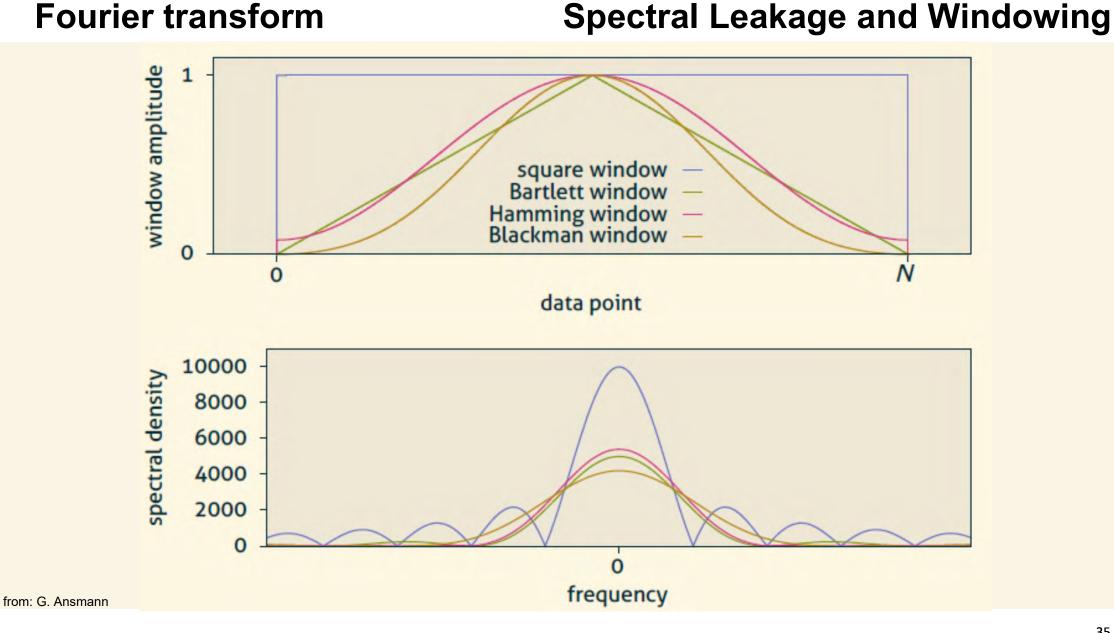
- integration limits (- ∞ to + ∞) ignored
- effectively: convolution of an infinitely long periodic signal with a rectangular window of finite (N) size \rightarrow spectral leakage

Fourier transform

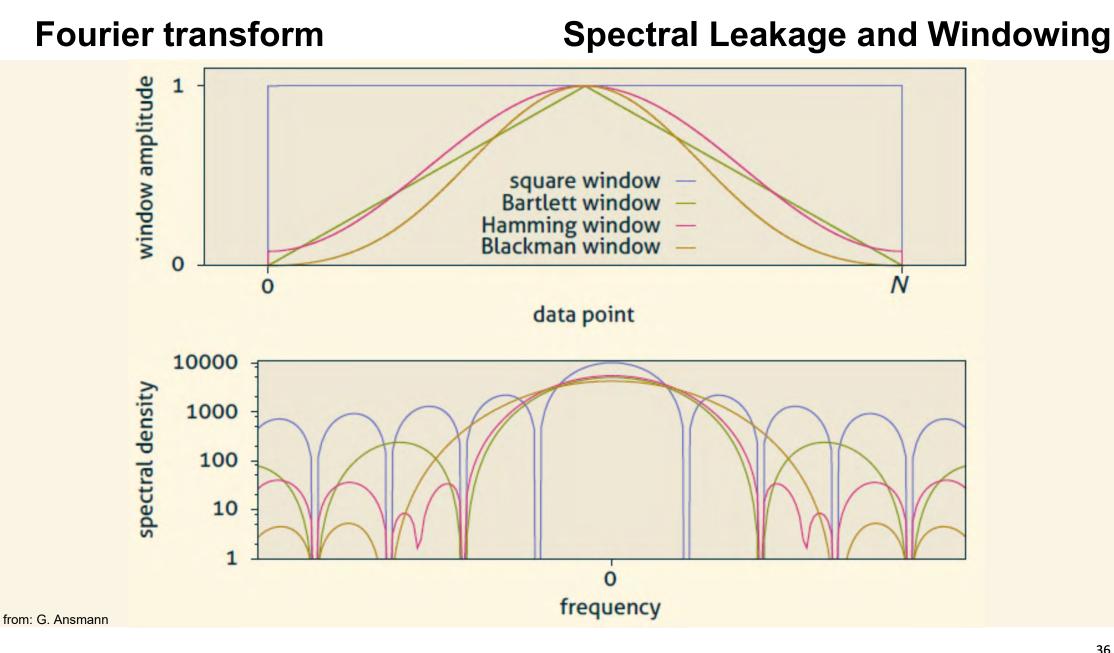
from: G. Ansmann

Spectral Leakage and Windowing



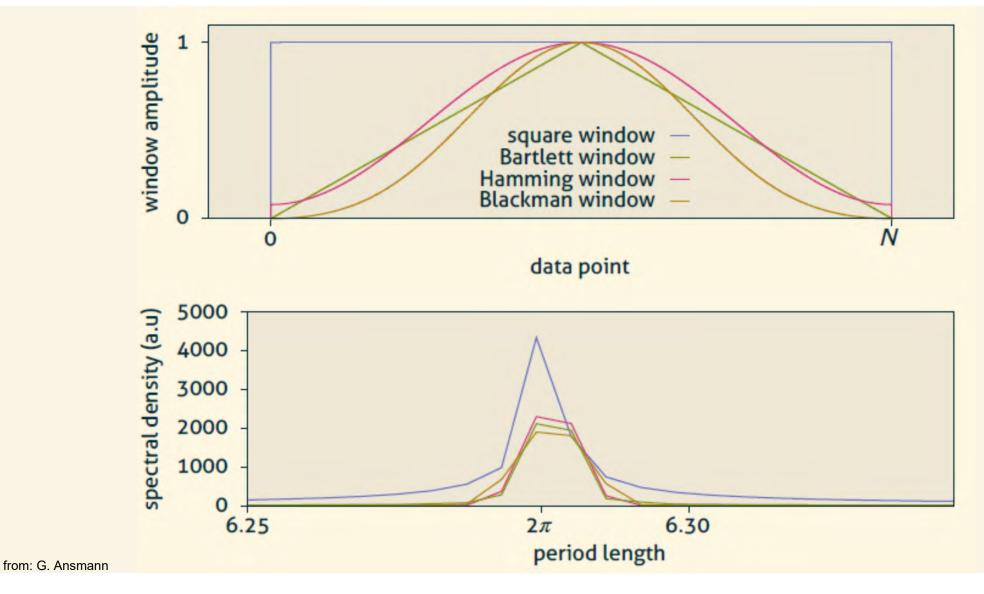


35



Fourier transform

Spectral Leakage and Windowing



Fourier transform

Uncertainty

The standard deviation of each Fourier coefficient is as large as its actual value!

Minimization of uncertainty (ergodicity assumed)

- \rightarrow averaging over moving windows in the time domain
- \rightarrow moving average in the frequency domain

processes whose realizations depend on chance

- demonstrate limits of linear methods
- contain most real linear processes as a special case
- null model / null hypothesis
- used for data-driven modelling and forecasting

White Noise

Each sample/value is independently drawn from the same distribution:

$$v_i = \epsilon_i; \quad i = 1, \dots, N$$

- all frequencies are equally present (analogy: white light)
- autocorrelation is zero, except for a delay of 1
- most often: Gaussian white noise
- basis for the following models.

Linear Stochastic Processes PDF (a.u.) v_i -1 -2 -3 -3- $^{-1}$ t v_i spectral density (a.u) $R_{v^{\tau}}$ -1 period length τ

White Noise

from: G. Ansmann

AR(k)-processes

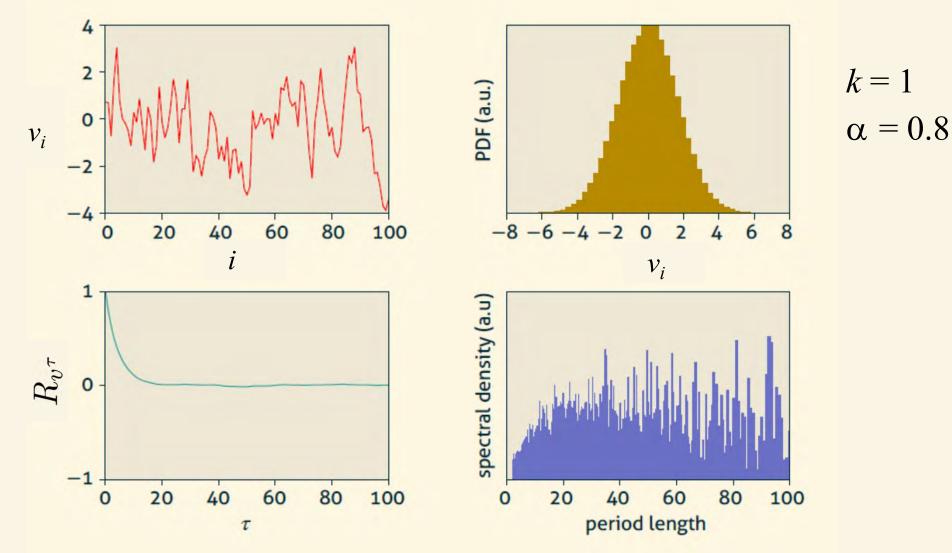
Autoregressive process of order k=1 (AR(1))

$$v_i = \alpha v_{i-1} + \epsilon_i; \quad i = 1, \dots, N$$

Idea: Random process with some memory

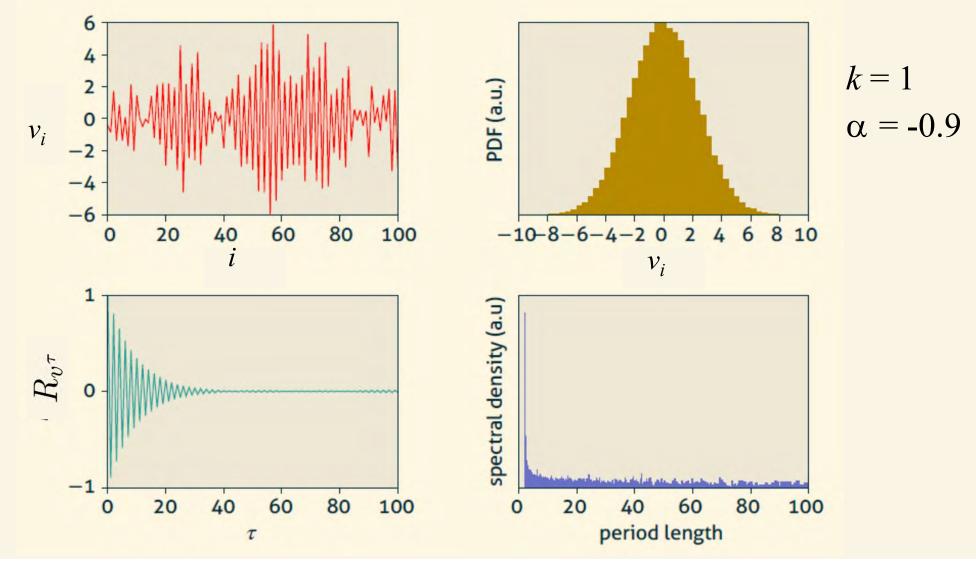
for $\alpha > 0$, autocorrelation decays exponentially for $\alpha < 0$, exponentially damped oscillation

AR(k)-processes



from: G. Ansmann

AR(k)-processes



from: G. Ansmann

AR(k)-processes

Autoregressive process of order k (AR(k))

$$v_i = \sum_{j=1}^k \alpha_j v_{i-j} + \epsilon_i; \quad i = 1, \dots, N$$

Idea: Random process with some memory

Autocorrelation is superposition of exponential decays and exponentially damped oscillations

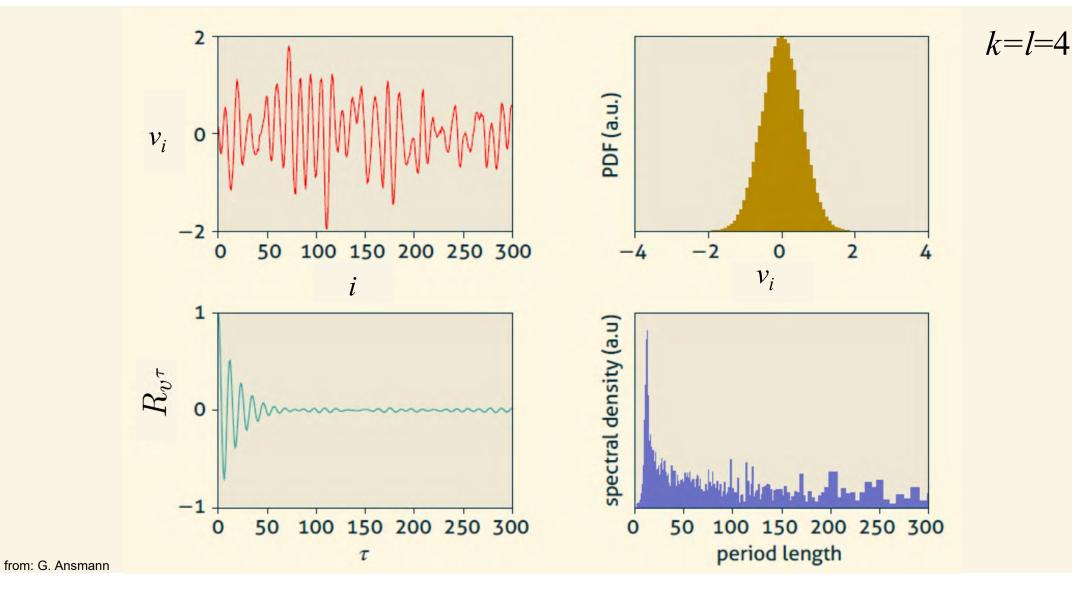
ARMA(*k*,*l*)-processes

Autoregressive moving-average process of orders k, l (AR(k, l))

$$v_i = \sum_{j=1}^k \alpha_j v_{i-j} + \sum_{m=1}^l \beta_m \epsilon_{i-m}$$

Idea: Random process with some memory and smoothed noise

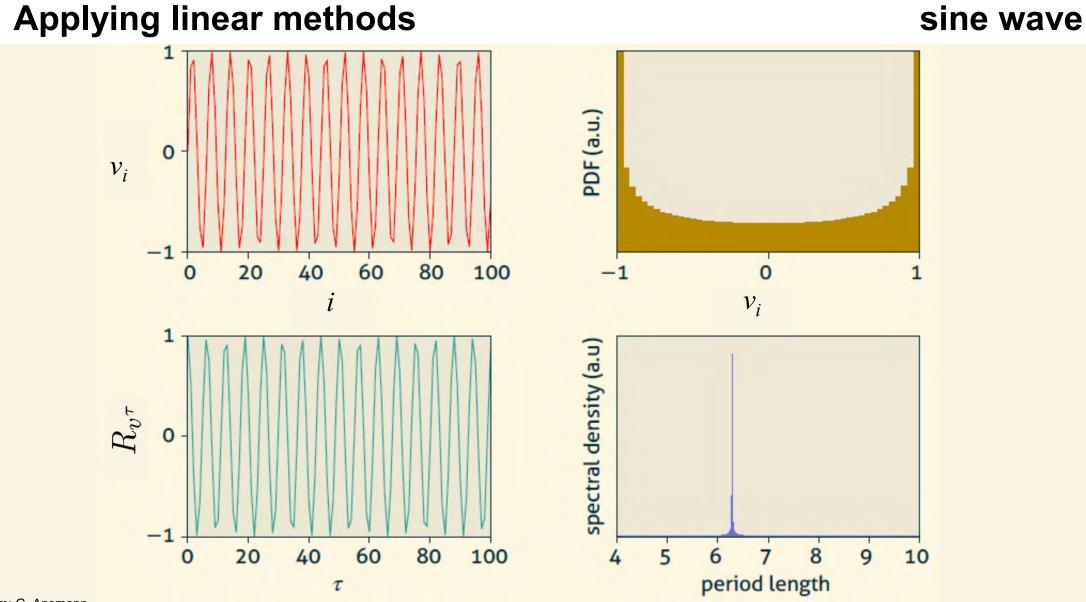
ARMA-processes



Further Stochastic Processes

- continuous-time, e.g., stochastic differential equations

- nonlinear stochastic processes

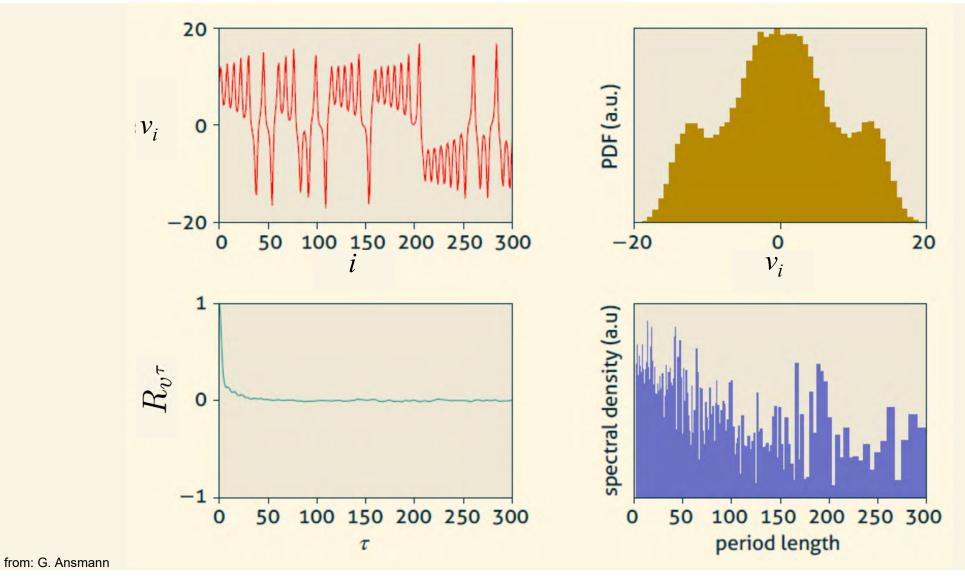


Applying linear methods PDF (a.u.) v_i -2 + v_i -2 i spectral density (a.u) $R_{v^{\tau}}$ $^{-1}$ period length τ

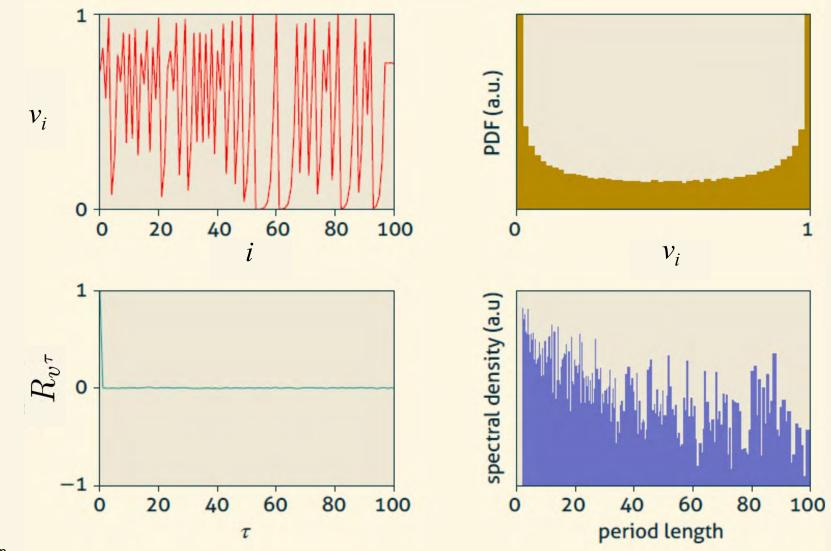
quasiperiodic

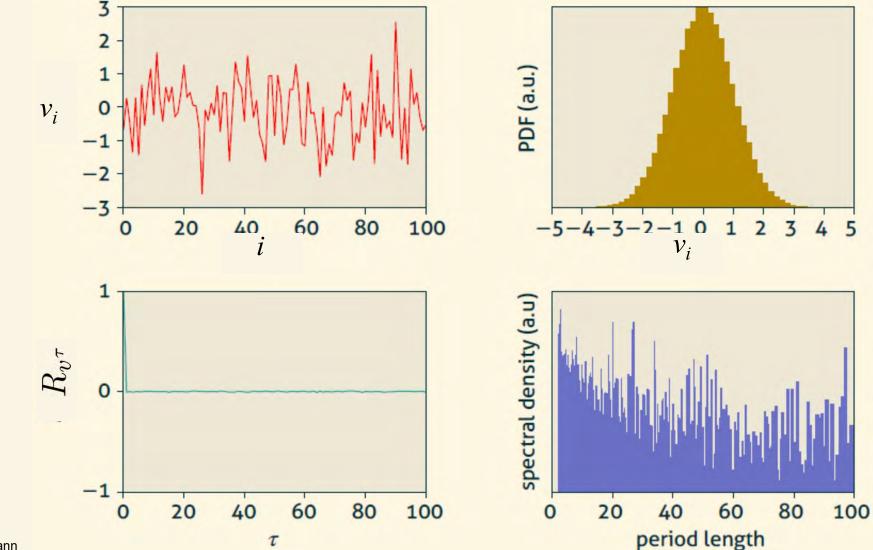
from: G. Ansmann

Lorenz oscillator



logistic map





Gaussian white noise

Capabilities:

linear methods can:

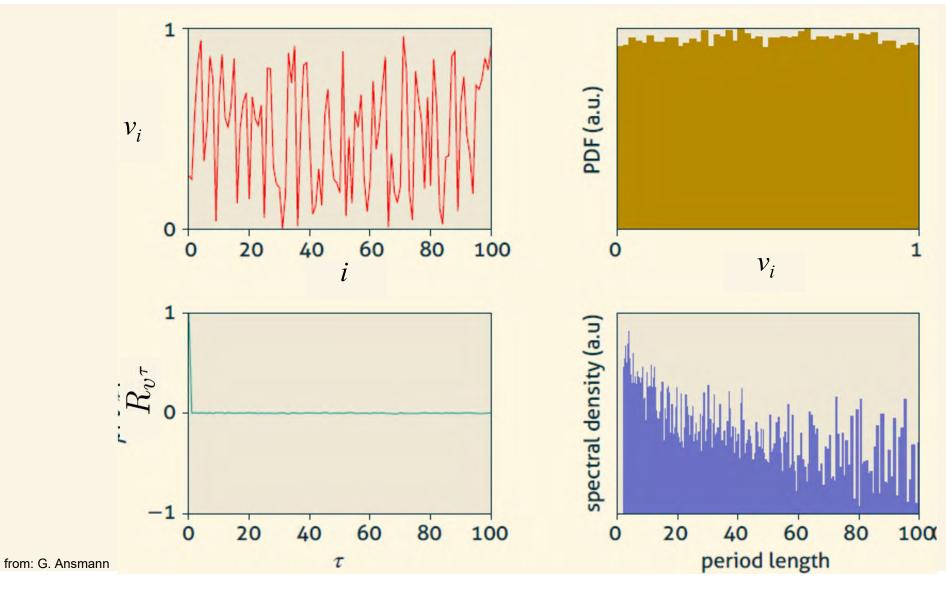
- detect periodic processes
 - (non-decaying autocorrelation, discrete Fourier spectrum)
- hint at non-stochastic dynamics (not normally distributed)
- yield data-based, linear models that may not capture essential dynamical properties

Restrictions:

linear methods **cannot**:

- robustly distinguish noise from chaos
- yield nonlinear or chaotic models

Zaslavskii map



Zaslavskii map

a discrete-time dynamical system that maps a point (x_n, y_n) in the plane to a new point (x_{n+1}, y_{n+1}) :

$$x_{n+1} = (x_n + \nu (1 + \mu y_n) + \epsilon \nu \mu \cos (2\pi x_n)) \mod 1$$

$$y_{n+1} = (y_n + \epsilon \cos(2\pi x_n)) \exp(-\Gamma)$$

where $\Gamma = 3; \mu = \frac{1 - \exp(-\Gamma)}{\Gamma}; \nu = \frac{400}{3}; \epsilon = 0.3$

Hénon map

a discrete-time dynamical system that maps a point (x_n, y_n) in the plane to a new point (x_{n+1}, y_{n+1}) :

$$\begin{aligned} x_{n+1} &= 1 - ax_n^2 + y_n \\ y_{n+1} &= bx_n \end{aligned}$$

where a = 1.4; b = 0.3

two-dimensional extension of logistic map

M. Hénon (1976). "A two-dimensional mapping with a strange attractor". Comm. Math. Phys. 50 (1): 69–77.

Applying linear methods Stochasticity vs. Deterministic Chaos

- simple chaotic maps may be indistinguishable from stochastic processes with linear methods
- any pseudo-random-number generator is nothing but a very complex chaotic map
- but: nature may be more benign

Any sufficiently complex determinism is indistinguishable from stochasticity