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Euclidean geometry

- characterization of some geometric object
- integer dimension

object dimension
point 0
line 1
area 2
volume 3
n-cube n

- number of degrees of freedom for characterization

Time series analysis: minimum number of equations needed
to model a physical system, system complexity, number of degrees
of freedom (see later)
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Euclidean geometry and generalized dimension
|dea:

If you multiply all lengths by a,
* lengths will change by a factor a

 areas will change by a  factor a2
« volumes  willchange bya  factor a3

— determine dimension by exponent of content-scaling
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Non-Euclidean geometry

> generalized concept (F. Hausdorff, 1919)
> dimension of some non-Euclidean object in an m-dim. space
> |dea:

- cover object in m-dim. space with hypercubes of side length ¢

- determine minimum number N(e) of hypercubes necessary to fully
cover object

- we find:

N(e) o< e Po

e—0

- Hausdorff dimension, fractal dimension, box-counting dimension
(D, = Dy in most cases)
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Dimensions

Hausdorff dimension of a line
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Hausdorff dimension of Cantor set

H.J.S. Smith G. Cantor
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Hausdorff dimension of Cantor set

H.J.S. Smith G. Cantor
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Fractals

Def.: a set f is called a fractal, if

Benoit B. Mandelbrot

- £ has some fine structure
- F isirregular

- F shows self-similarity (a subset of F is similar to F)

- fractal (Hausdorff-Besicovitch) dimension strictly exceeds
the topological dimension

Applications:

many natural structures, modelling, technology, art, ... 9
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Dimensions

Hausdorff and topological dimension of Cantor set

Length L (topological dimension)

H.J.S. Smith

G. Cantor
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Dimensions

Fractals

Benoit B. Mandelbrot

Q: What does the “B.” in “Benoit B. Mandelbrot” stand for?

A: “Benoit B. Mandelbrot”

possibly not a joke

11
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Dimensions

Fractals and the Coastline Paradox

If the coastline of Great
Britain is measured
with a ruler of 100 km
length, then the length
of the coastline is about
2800 km.

With a ruler of 50 km
length, the total length
Is about 3400 km, i.e.
600 km longer.

For rulers with smaller
length, the length of the
coastline diverges to
infinity

12
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Some Fractals and their dimensions
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Dimensions

Some Natural Fractals

Romanesco broccoli lung

river delta

fern

dandelion

blood vessels mouse brain

bolt

14
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Dimensions

Some Natural Fractals

15
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Technical Fractals (an example)

fractal grids to generate turbulent flow

towards “fractal wind turbine blades”

S. Weitemeyer et al. Multi-scale generation of turbulence with fractal grids and an active grid. Fluid Dynamics Research 45(6):061407, 2013 16
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Dimensions

Fractals and Art

17
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Fractals and Art

Jack the dripper: chaos in modern art

Of all the abstract expressionist painters, Jackson Pollock was perhaps the
most controversial. He would dash around large canvases rolled out on

the floor of his barn, dripping paint from a wooden stick. The critics
poured scorn on his paintings, calling them "meaningless chaos". But
chaos is now a rigorous scientific concept that we know appears
throughout nature. One important part of chaos theory is fractal
behaviour, which describes objects that have similar patterns when viewed
at different magnifications. Richard Taylor, a physicist at the University of
New South Wales, has now discovered this characteristic in many of
Pollock's works. Rather than being the fraud that many people assume,
Taylor believes that Pollock subconsciously understood the patterns of
nature so well that he was able to capture their very essence -- chaos and
fractals -- on canvas.

Physics Web November 1997

18
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Dimensions

Fractals and Art

19
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Fractals and Art

David Jonas from the University of New South Wales 1n Sydney
discovered that the fractal dimension of Pollock's drip paintings
increased from nearly 1.0 in 1943, to 1.72 in 1952, suggesting that
Pollock gradually refined his technique over to time to make his painting

more fine grained.
Physics News 1999 20
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Strange attractors and fractal dimensions

lkeda map Zaslavskii map Hénon map

(1.7) (1.397) (1.261)

‘

o Lorenz system

Rossler system (2.06)

(2.01)

21
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Generalized dimensions

- estimating dimensions in high-dimensional space via box-counting
IS hard
- box counting ignores how densely the boxes are populated

- idea: weight boxes by probability p, to find state in box i

Rényi dimensions, q-dimensions
- partition state space into M hypercubes (boxes) of side length ¢

- estimate probability by p; = lim Ni/n
N — o0

log (324 p?)
Dy = 10— Ty leso

22
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Generalized dimensions Rényi dimensions

o Dy := (}EI(I) D, (box-counting dimension)

e D := lim D, (information dimension)
q—1

e D (correlation dimension)

¢ Dtopoé DHSSDQSDléDOSm
e In most cases: Dy =... =Dy = D1 = Dy
D, counts non-empty boxes

D, measures gain of information to find state in box i
if D,= D,, attractor is homogeneous 2
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Generalized dimensions Rényi dimensions

dimension of attractors:

« D & N: strong indicator for nonlinearity (chaotic dynamics)

(D diverges for purely stochastic dynamics)
« characterizes self-similarity, complexity
« provides hints for modelling (degrees of freedom, attractor structure’

* sanity check via embedding theorems

24
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Generalized dimensions Rényi dimensions

dimension from time series:
we have:

log (32 p?)
Dq = i = 1ozt

* replace limes by slope in double-logarithmic plot
- approximate p; ~ Ni/N
« approximate sum over probabilities by “correlation sum”;

Cil) =k, (45,005 -a))"

counts number of point closer than ¢

P. Grassberger and |. Procaccia, Physica D 9, 198 (1983); Phys. Rev. Lett. 50, 346 (1983).

25
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Dimensions

Generalized dimensions

dimension from time series:
correlation dimension:

* quickest to calculate

P. Grassberger and |. Procaccia, Physica D 9, 198 (1983); Phys. Rev. Lett. 50, 346 (1983).

Rényi dimensions

26
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Dimensions

Generalized dimensions

dimension from time series:

G,

from: G. Ansmann

Rényi dimensions

example: sine wave

27
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Dimensions

Generalized dimensions

dimension from time series:

D,

from: G. Ansmann

Rényi dimensions

example: sine wave
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Dimensions

Generalized dimensions

dimension from time series:

G,

from: G. Ansmann

Rényi dimensions

example: Gaussian noise
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Dimensions

Generalized dimensions

dimension from time series:

from: G. Ansmann

Rényi dimensions

example: Gaussian noise

30



Fundamentals of Analyzing Biomedical Signals Dimensions

Generalized dimensions Rényi dimensions
dimension from time series: example: Hénon map
Tpi1 = 1-— a:z:% + UYn,

Yn+1 = bajn

where

a=14:6=0.3

from: G. Ansmann
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Generalized dimensions Rényi dimensions
dimension from time series: example: Hénon map
Ln+1 — 1 — iji + UYn,

Yn+1 = bxn

where

a=14;6=0.3

from: G. Ansmann
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Generalized dimensions Rényi dimensions
dimension from time series: example: Hénon map
LIn+1 — 1 — CLQZ?L + UYn,

Yn+1 = bxn

where

a=14;b=0.3

from: G. Ansmann
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Generalized dimensions Rényi dimensions
dimension from time series: example: Hénon map
Ln+1 — 1 — 0133,,21 + UYn,

Yn+1 — bajn

where

a=14;:6=0.3

from: G. Ansmann
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Generalized dimensions Rényi dimensions
dimension from time series: example: Hénon map
Tpi1 = 1-— ami + Yn,

Yn+1 = bxn

where

a=14;6=0.3

from: G. Ansmann
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Generalized dimensions Rényi dimensions
dimension from time series: example: Hénon map
Ln+1 — 1 — CLCII% + UYn,

Yn+1 = bxn

where

a=14;:6=0.3

from: G. Ansmann
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Generalized dimensions Rényi dimensions
dimension from time series: example: Hénon map
Ln+1 — 1 — CLQZ?L + UYn,

Yn+1 — bxn

where

a=14;6=0.3

from: G. Ansmann
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Dimensions

Generalized dimensions

dimension from time series:

Tpt1 = 1-— aazi + Un,
?/n+1 — bajn DZ
where

a=14;6=0.3

literature:

from: G. Ansmann

Rényi dimensions

example: Hénon map

38
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Generalized dimensions Rényi dimensions

dimension from time series:

dimension depends on the scope

How many dimensional is a plate of spaghetti?
Zero when seen from a long distance,

two on the scale of the plate,

one on the scale of the individual noodles

and three inside a noodle.

Maccaroni is even worse.

attributed to Peter Grassberger

39
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Generalized dimensions Rényi dimensions

dimension from time series: example: torus

simulating maccaroni: sum of two incommensurable sine
waves (tube/torus) and some noise (dough):

from: G. Ansmann
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Dimensions

Generalized dimensions

dimension from time series:

G,

from: G. Ansmann

Rényi dimensions

example: torus
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Dimensions

Generalized dimensions

dimension from time series:

G,

from: G. Ansmann

Rényi dimensions

example: torus
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Dimensions

Generalized dimensions

dimension from time series:

D,

from: G. Ansmann

Rényi dimensions

example: torus
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Generalized dimensions Rényi dimensions

dimension from time series: what can go wrong?

field applications

- number of data points (lim N — )

- data precision (lim € — 0)

- strong correlations in data (sampling interval)

- hoise

- filtering

- superposition of non-interacting dynamical systems

44
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Generalized dimensions Rényi dimensions
dimension from time series: what can go wrong?

number of data points

- requirement: lim N — o
- field applications: N always limited, stationarity issues,
system life-time, observation time

- proposed estimators: N~ 102 (Albano et al., 1987)
N ~ 42P2 (Smith, 1988)
N ~ 100”2 (Procaccia, 1989)

- N as large as possible; resolvability of attractor structure depends
on density of phase space points

45
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Generalized dimensions Rényi dimensions

dimension from time series: what can go wrong?

number of data points determines maximum resolvable dimension
(Ruelle criterion)

46
from: D. Ruelle. The Claude Bernard Lecture, 1989 - Deterministic chaos: the science and the fiction. Proc. R. Soc. Lond. A 427, 241-248 (1990)
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Generalized dimensions Rényi dimensions

dimension from time series: what can go wrong?

from: D. Ruelle. The Claude Bernard Lecture, 1989 - Deterministic chaos: the science and the fiction. Proc. R. Soc. Lond. A 427, 241-248 (1990)
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Dimensions

Generalized dimensions
dimension from time series:

data precision

quantization error: g = p/2

6 resolution (bits) 12
- e 4 ' }

1425'£a } 4+

Roessler attractor

/ Hénon attractor /

-+

t t

J.85

n

| " -log, (p/E) 6 2 ~log, (p/E) 9

Rényi dimensions

what can go wrong?

field applications: analog-digital converter (ADC with n bits)
digitizing accuracy: p = 4/2", A = amplitude range

Fig. 1. Slopes of log-log plots of the correlation integral (esti-
mates of D) calculated for data rounded to different resolutions,
for (a) the Hénon attractor, (b) the Roessler attractor. In (a)
one scaling region and in (b) three slightly different scaling re-
gions were evaluated (digitizing accuracy p, average length scale

€).
The values of 4 are calculated by a least

squares fit of the slope of the log C(e) versus loge
plots over a selected scaling region €.,;,< €< €mnax
(represented by an average length scale €=
(€min€max)'’/?). The data can be well fitted by the
equation

A4=D,(1—kp/€) , (2)

where p is one half of the least significant digit and

k is a positive factor of order unity. 18

from: M. Mdller, et al. Errors from digitizing and noise in estimating attractor dimensions. Phys. Lett. A, 138(4-5), 176—-182, 1989
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Generalized dimensions Rényi dimensions
dimension from time series: what can go wrong?

data precision

possible way to minimize influence of the quantization error:
add noise prior to digitizing
(pre-whitening, dithering, bleaching)

effectiveness depends on system under study
not effective for broad-band signals

caveat: adding noise can lead to erroneous dimension estimates

49
from: M. Moller, et al. Errors from digitizing and noise in estimating attractor dimensions. Phys. Lett. A, 138(4-5), 176-182, 1989
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Generalized dimensions Rényi dimensions
dimension from time series: what can go wrong?

strong correlations in data

field applications
- sampling rate according to Nyquist-Shannon theorem:

at least twice as high as signal’s maximum frequency f. ..
to avoid aliasing

- how to treat cases with unknown f___ 7
- how to treat a chaotic signal?
- is resampling (over-/undersampling) a good choice?

50



Fundamentals of Analyzing Biomedical Signals Dimensions

Generalized dimensions Rényi dimensions
dimension from time series: what can go wrong?

strong correlations in data

problem: for a sufficiently fine temporal resolution, points close in time
are also close in phase space
- correlation sum overestimated

Theiler correction:.
exclude temporally close points from the correlation sum:

Zi,j O (e —|v; —v5]) — Z|z’—j|>W © (e — |v; — vj])

(adjust normalization accordingly)

51
J. Theiler, Phys. Rev. A, 34(3):2427-2432 1986



Fundamentals of Analyzing Biomedical Signals Dimensions

Generalized dimensions Rényi dimensions

dimension from time series: what can go wrong?

strong correlations in data

how to choose cutoff 7 for Theiler correction?

minimum requirement: ¥ in the order of autocorrelation time (A)
better: W > A (<) "

(exact choice is then insignificant)

J. Theiler, Phys. Rev. A, 34(3):2427-2432 1986

52
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Dimensions

Generalized dimensions

dimension from time series:

Rényi dimensions

what can go wrong?

strong correlations in data (ex.: Lorenz system without correction)

D,

from: G. Ansmann

53



Fundamentals of Analyzing Biomedical Signals Dimensions

Generalized dimensions Rényi dimensions
dimension from time series: what can go wrong?
strong correlations in data (ex.: Lorenz system with correction)

D,

from: G. Ansmann
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Generalized dimensions Rényi dimensions
dimension from time series: what can go wrong?
noise

field applications:

- data always noisy (characteristics of noise?)

- measurement errors (white noise approximation)

- additive vs. multiplicative noise

- if number of data points limited, dimension of white noise finite!

55
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Generalized dimensions Rényi dimensions

dimension from time series: what can go wrong?

example: white noise; N = 8192

D,

length of scaling region As

embedding dimension m

56
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Generalized dimensions Rényi dimensions
dimension from time series: what can go wrong?

example: low-pass-filtered noise; N = 8192, Theiler correction

D
2 white

noise

filtered
noise

embedding dimension m .

Rapp et al., Filtered noise can mimic low-dimensional chaotic attractors. Phys. Rev. E, 47, 2289 (1993)
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Generalized dimensions Rényi dimensions

dimension from time series: what can go wrong?

example: low-pass-filtered noise; N = 8192, Theiler correction

white
noise

filtered
noise

length of scaling region As

embedding dimension m

58
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Generalized dimensions Rényi dimensions
dimension from time series: what can go wrong?
noise

classical filtering of noise induces structure in phase space
- spatial (long-ranged) correlations

Theller correction only minimized short-ranged correlations

—

- do not use classical filter for chaotic signals !

- apply other methods to discriminate determinism from stochasticity
- use other nonlinear noise reduction schemes (future lectures)

59
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Generalized dimensions Rényi dimensions
dimension from time series: what can go wrong?
filtering

field applications:
- sampling theorem, avoid aliasing
- noise reduction (see above!)

- chaotic signals typically broad-band (see Linear Methods)
- do not filter chaotic signals !

60
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Generalized dimensions Rényi dimensions
dimension from time series: what can go wrong?

example: filtered Hénon map
recursive realization of single-

pole low-pass filter (1. order)

F1G. 3. Influence of degree of filtering on attractor shape. Shown are return maps (£, ,, vs Z, ) of the “filtered Hénon system,”
Eq. (4), with eight-bit resolution. All four attractors are scaled to the same size.

61
Badii et al., Phys. Rev. Lett. 60, 979, 1988; Mitschke et al., Phys Rev A 37, 4518, 1988)
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Generalized dimensions Rényi dimensions

dimension from time series: what can go wrong?

example: filtered Hénon map HENON MAP'!

N

dimension increase (+1)

DIMENSION

Interpretation:

- superposition of two systems
(Hénon system + filter) | ' v

_fi : : 0 1 2 4 6 8 oo
filter (.passwle, linear) FILTER ROLL-OFF FREQUENCY n
one-dimensional system

FIG. 1. D, values for simulated low-pass filtering with
different rolloff frequencies 1 for the Hénon map. The solid line

. . shows the predicted D,(7). Note change of scale at the dashed
filtering does not affect other lines. |

Invariant measures

—h
i

—_—-—‘———-———a—m-———_-——-—
-1-.—--—..-4]—.—-——___....._—...._

62
Badii et al., Phys. Rev. Lett. 60, 979, 1988; Mitschke et al., Phys. Rev. A 37, 4518, 1988
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Generalized dimensions Rényi dimensions
dimension from time series: what can go wrong?

product dynamical system

- Consider two non-interaction dynamical systems A and B.
For the product dynamical system AxB, we have

dim(AxB) < dim(A) + dim(B).

- Consider time series of system observables v(A), resp. v(B) that
solely depend on A, resp. B, and a time series v(AxB) of the
product dynamical system with

v(AxB) = a v(A) + S v(B)

- Considercases o=, a< f,and a > f

Hurewicz and Wallmann (1948): Dimension Theory

63
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Dimensions

Generalized dimensions
dimension from time series:

product dynamical system

Rényi dimensions

what can go wrong?

64
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Generalized dimensions Rényi dimensions
dimension from time series: what can go wrong?

product dynamical system

sine wave (A) + Hénon map (B)

a=p="1 a=0.1;p=1 a=1;,=0.1

65
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Generalized dimensions Rényi dimensions

dimension from time series: what can go wrong?

66
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Dimensions

Generalized dimensions

dimension from time series:

a=01;=1

Rényi dimensions

what can go wrong?
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Dimensions

Generalized dimensions

dimension from time series:

a=1;,=0.1

Rényi dimensions

what can go wrong?

68
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Generalized dimensions Rényi dimensions
dimension from time series: what can go wrong?

product dynamical system

sine wave (A) + Hénon map (B)

o=p=1 0=0.1;p=1 o=1;p=0.1

69
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Generalized dimensions Rényi dimensions

dimension from time series: Summary

Estimate dimension of time series via slope of correlation sum

— check multiple embedding dimensions m

— select scaling region properly

— apply Theiler correction

— be aware of influencing factors, limitations, and pitfalls

D & N : chaotic dynamics
D € N : hint at regular dynamics
D = = :noise

21



